
1

WEBAPP PROMOTING

CLEAN ENERGY

DEPLOYED ON AWS

Elastic Kubernetes

Service (EKS)

2

1. Contents

Contents
1. Contents .. 2

2. Abstract ... 3

3. Acknowledgments ... 3

4. Introduction .. 4

a. Aims of the project.. 5

b. Scope ... 5

5. Architecture .. 6

a. Infrastructure Design Specification ... 6

b. Continuous Integration and Continuous Deployment .. 7

- Buildspec.yml .. 8

- Deployment.yaml .. 9

- Dockerfile .. 10

c. Environment information’s ... 10

- AWS Elastic Kubernetes Service (EKS) .. 11

- AWS CodeCommit ... 13

- AWS Parameter Store ... 14

- AWS CodePipeline ... 14

- AWS CodeBuild ... 15

- AWS Elastic Container Repository (ECR) ... 16

- AWS CloudWatch .. 16

- AWS Identity Access Management (IAM) ... 17

- AWS RDS Database ... 19

- AWS Security Groups .. 20

d. Application Design and Specification .. 21

- Home page .. 22

- About page .. 22

- Contact page ... 23

- Calculator page ... 23

- Records.. 23

- Solar Panels ... 24

- Electric Cars ... 25

- Solar Water Panels .. 25

3

- Fence turbines... 26

- Wind Turbines ... 26

- River Turbines ... 27

- _Layout.cshtml file to show CSS implementation for the website 31

6. Application Development environment ... 34

7. Infrastructure Development Environment ... 34

8. Database Design .. 35

9. Application Testing.. 35

a. Performance testing ... 35

b. Manual testing .. 37

10. Infrastructure testing .. 39

11. Conclusions ... 41

12. References / Bibliography ... 41

2. Abstract

The main project aim was to build webapp, deploy in cloud and build continuous

Integration/continuous deployment around this system. The app provides some information’s about

clean energy possibilities for homeowners in Ireland, links to companies which can help with it and

links for grants from government if technology apply for such grant. Webapp also has solar panels

calculator which provide average energy generation according to the size of panels in Ireland, all

entries from calculator are stored in database (AWS RDS SQL) for future use and are visible for

admins on this site. Once the application was ready, docker container image was built and stored in

AWS ECR (Elastic Container Service), another step was to deploy in AWS EKS (Elastic Kubernetes

Service) cluster. Last step was to build continuous Integration/continuous deployment system.

3. Acknowledgments

I would like to thank my teachers who gave me opportunity to work on this project. During the

project I have learned a lot about all framework needed to finish project like ASP.NET core and AWS

Elastic Kubernetes Service, SQL, and other useful info about clean energy technologies. Big thanks to

my supervisor Mehran Rafiee who give me golden points which help me a lot in my project.

For ASP.NET core I have used these videos from YouTube channel, and tutorial site:

4

https://www.youtube.com/watch?v=iKmUMgZj-cE (Industrial and IT Automation, n.d.)

https://www.youtube.com/watch?v=YUPg41kG_kw (BoostMyTool, n.d.)

https://www.w3schools.com/asp/default.asp (W3Schools, n.d.)

For AWS EKS I have used these videos from YouTube channel, and tutorial sites:

https://www.youtube.com/watch?v=LlisKI-gN5w (Sandip Das, n.d.)

https://www.youtube.com/watch?v=nEK7e0QUVio (Sandip Das, n.d.)

https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html (AWS, n.d.)

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html (AWS, n.d.)

https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html (AWS, n.d.)

For Calculator formula used these websites:

https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-

energy-output-of-a-photovoltaic-system (Saur Energy, n.d.)

https://solargis.com/maps-and-gis-data/download/ireland (Solargis, n.d.)

For information about AWS tools used these websites:

https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-

kubernetes-service.html (AWS, n.d.)

https://aws.amazon.com/codecommit/ (AWS, n.d.)

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-

store.html (AWS, n.d.)

https://aws.amazon.com/codepipeline/ (AWS, n.d.)

https://aws.amazon.com/codebuild/ (AWS, n.d.)

https://aws.amazon.com/ecr/ (AWS, n.d.)

https://aws.amazon.com/ecr/ (AWS, n.d.)

https://aws.amazon.com/cloudwatch/ (AWS, n.d.)

https://aws.amazon.com/iam/ (AWS, n.d.)

4. Introduction

https://www.youtube.com/watch?v=iKmUMgZj-cE
https://www.youtube.com/watch?v=YUPg41kG_kw
https://www.w3schools.com/asp/default.asp
https://www.youtube.com/watch?v=LlisKI-gN5w
https://www.youtube.com/watch?v=nEK7e0QUVio
https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system
https://solargis.com/maps-and-gis-data/download/ireland
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-kubernetes-service.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-kubernetes-service.html
https://aws.amazon.com/codecommit/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/iam/

5

My Project is online Web Portal wrote in ASP.NET core framework, which contains information

about clean energy technologies that can be used by homeowners, links for fitting companies in

Ireland and links for grants if they apply for that technology also in Ireland. Is deployed on AWS

cloud EKS (AWS Kubernetes) and contain CI/CD (Continuous Integration/Continuous Deployment)

system which use AWS CodeCommit, CodePipeline, ParamaterStore, CloudWatch, Elastic Container

Repository and CodeBuild. It is Highly Available, Secure, Redundant and a Scalable system, deployed

on two availability zones on North Virginia region us-east-1a and us-east-1b.

a. Aims of the project

1. Implement what I have already learned during the Higher Diploma

2. Learn new tools and frameworks needed by current DevOps engineers which I am planning

to be in future

3. Be helpful for people looking for clean energy technologies

4. Be my portfolio for future employer

Ad. 1 During my Higher Diploma studies I have learned a lot about the AWS Cloud tools and wasn’t

difficult to design and implement VPC (virtual private network) for the project as we had modules

which covered this technology, also creating networking, subnetting for the system was simple.

ASP.NET core was also in one of modules and material help me a lot in this project. On one of

assignment, I did AWS ECS (Elastic Container Service) deployment and had some knowledge about

Docker and containerization on AWS.

Ad.2. One of main tools I had to learn was ASP.NET layout of the page and how CSS is implemented

in such framework, how you use Razor pages and the model cooperating with view of the page. Also

seeing how to save, retrieve data from SQL database.

AWS EKS how to deploy and maintain cluster where most of work is done through AWS CLI with

kubectl plugin commands.

Ad.3. Hope this web application will be useful and helpful for users, having information of clean

energy technologies explained, have links to fitting companies around Ireland and links for possible

grants from Government institutions like Sustainable Energy Authority of Ireland.

b. Scope

Scope of this project follow:

- Webapp in ASP.NET core

a. Website form and calculations

b. Database connection for storing results

c. Display all records after logging in

- Continuous Integration and Continuous deployment system on AWS by using CodePipeline,

CodeBuild, CodeCommit, Parameter store from System Manager, CloudWatch events

- AWS CodeCommit setup, where we store our webapp code

6

- AWS ECR setup, where we store our webapp docker container

- AWS EKS service setup, orchestrator tool that our containers run on

- Acquiring all necessary clean energy details and formula to make calculations for users

- AWS VPC setup for our infrastructure

- Setup AWS Security groups and IAM roles to achieve highly secure system

- AWS VPC Subnetting to separate frontend and backend services

- AWS Networking to make sure packet traffic flow desired way

- AWS Autoscaling group setup so our webapp scale when needed

5. Architecture

a. Infrastructure Design Specification

7

EKS cluster is deployed on Private Subnet 1 and 2, backend database in Private Subnet 3 and 4 on

EC2 nodes and EKS master is deployed across all subnets. There are 2 NAT gateways one on each

availability zone. Containers accept traffic just from the Database security group on port 1433, load

balancer security group all traffic and EKS API master security group all traffic. All outbound traffic

from containers, nodes and database are going through NAT gateways. There is 2 EC2 nodes

deployed across the 2 availability zones were containers run. Autoscaling group is set to 1 minimum

node, desired 2 nodes and if spot needed up to 3 nodes can be deployed. EKS cluster pods

autoscaling group is called Horizontal Pod Autoscaler and is set to minimum 2 pods and maximum 3

pods, is deployed by watching metrics of CPU if CPU usage is more than 70% than another pod is

deployed. For this to work metrics-server must be deployed on EKS cluster which is not by default.

SQL Server database on AWS RDS is use with multizone deployment. System is design with 6 pillars

of Well-Architected framework for operational excellence, security, reliability, performance

efficiency, cost optimization, and sustainability also system is Highly Available by spanning through 2

availability zones. It scales on demand.

b. Continuous Integration and Continuous Deployment

Continuous Integration (CI) is DevOps practice were developers regularly merge their code changes

into central repository after which automated builds and test are run. The key goal of continuous

integration is to reduce time of software updates. And Continuous deployment is automating

deployment, so production happens automatically. For this project to achieve this I have used tool

from AWS CodeCommit, CodePipeline, CodeBuild, Elastic Container Repository(ECR), Parameter

store from System Manger and CloudWatch events.

8

When a developer updates the code to central repository(CodeCommit), CloudWatch event is

triggered and send information to CodePipeline which starts a CI/CD pipeline, it is verifying changes

first on CodeCommit, getting variables from CodePipline project and from parameter store if that

pass instruction are send to CodeBuild to start test and build docker container which is send to

ECR(Elastic Container Repository), once this stage is done, CodeBuild sends deployment instruction

to EKS(Elastic Kubernetes Service), and if all stages pass on CodeBuild, than CodeBuild sends

information of finished process to CodePipeline and process is done. Changes done by developer are

applied to production in 2-3 min.

CodeBuild require 3 files to run buildspec.yml, deployment.yaml that run with kubectl(Kubernetes

CLI) and dockerfile for building docker container:

- Buildspec.yml
“

version: 0.2

phases:

 install:

 commands:

 - echo Installing app dependencies...

 - curl -o kubectl https://s3.us-west-2.amazonaws.com/amazon-

eks/1.22.6/2022-03-09/bin/linux/amd64/kubectl

 - chmod +x ./kubectl

 - mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl && export

PATH=$PATH:$HOME/bin

 - echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc

9

 - source ~/.bashrc

 - mkdir -p $HOME/.kube

 - aws eks --region us-east-1 update-kubeconfig --name projectEKS

 - echo 'Check kubectl version'

 - kubectl version --short --client

 - echo check connection to claster

 - kubectl get svc

 pre_build:

 commands:

 - echo Logging in to docker...

 - docker login -u $docker_username -p $docker_password

 build:

 commands:

 - echo Build started on `date`

 - echo Building the Docker image...

 - docker build -t $IMAGE_REPO_NAME .

 - docker tag $IMAGE_REPO_NAME:$IMAGE_TAG

$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com/$IMAGE_REPO_NAME:$IM

AGE_TAG

 post_build:

 commands:

 - echo Build completed on `date`

 - echo Pushing the Docker image to ECR...

 - aws ecr get-login-password --region $AWS_DEFAULT_REGION | docker login

--username AWS --password-stdin

$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com

 - docker push

$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com/$IMAGE_REPO_NAME:$IM

AGE_TAG

 - kubectl apply -f eks/deployment.yaml

 - kubectl rollout restart -f eks/deployment.yaml
“

- Deployment.yaml
“

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app.kubernetes.io/name: cleanenergy

 app.kubernetes.io/instance: cleanenergy-instance

 app.kubernetes.io/version: "1.0.0"

 app.kubernetes.io/managen-by: kubectl

 name: cleanenergy

spec:

 replicas: 2

 selector:

 matchLabels:

10

 app: cleanenergy

 template:

 metadata:

 labels:

 app: cleanenergy

 spec:

 containers:

 - image: 953941695125.dkr.ecr.us-east-

1.amazonaws.com/cleanenergycontainer:latest

 imagePullPolicy: Always

 name: cleanenergy

 resources:

 requests:

 cpu: "250m"

 limits:

 cpu: "500"

 ports:

 - containerPort: 80

“

- Dockerfile
“

FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build-env

WORKDIR /app

Copy everything

COPY . ./

Restore as distinct layers

RUN dotnet restore

Build and publish a release

RUN dotnet publish -c Release -o out

EXPOSE 80

Build runtime image

FROM mcr.microsoft.com/dotnet/aspnet:6.0

WORKDIR /app

COPY --from=build-env /app/out .

ENTRYPOINT ["dotnet", "CleanEnergy.dll"]
“

c. Environment information’s

11

- AWS Elastic Kubernetes Service (EKS)

Amazon Elastic Kubernetes Service is fully managed service where you can run Kubernetes on AWS

without needing to install, operate and maintain Kubernetes control plane or nodes. It is integrated

with the core AWS services like Auto Scaling Groups, VPC (Virtual Private Network), ECR (Elastic

Container Repository), CloudWatch, IAM, load balancer for your containerized applications. As the

orchestrator tool is very popular in modern businesses that can automate configuration,

management, and coordinate of computer systems, applications, and services. When running

applications on EKS you can choose underlying computer power for containers from EC2 or Fargate.

For this project EC2 was chosen as underling computer power for containers:

Have 2 pods deployed for clean energy application:

Have 1 pod deployed for metric server that helps manage Horizontal Auto Scaling:

12

Have 3 deployments running clean energy application, metric-server and dns:

Have 1 HorizontalPodAutoscaler:

13

- AWS CodeCommit

AWS CodeCommit is managed source control service that hosts private Git repositories. It is secure,

highly scalable and is easy for team to securely collaborate on code with contribution encrypted in

transit. CodeCommit support standard functionality of Git and you can store anything form code to

binaries.

For this project 1 repository was created:

14

- AWS Parameter Store

AWS Parameter Store is part of the AWS System Manager for holding secrets, providing secure,

hierarchical storage. You can store passwords, connection strings and other secrets as parameter

values. All this information stored as plain text or encrypted, later can be used in your scripts,

commands, documents, and configuration and automation workflows. Parameter store is integrated

with other AWS services, and you can reference to Parameter store when needed.

For this project there was 2 values stored in Parameter store:

- AWS CodePipeline

AWS CodePipeline is a fully managed continuous delivery service that helps to automate new

applications or infrastructure updates. CodePipeline automate builds, test, and deploy phases once

code is change. You can easily integrate third party services like Git, Jenkins, or other plugins. It is

enabling features and updates for your application.

For this project was setup 1 CodePipeline project:

15

- AWS CodeBuild

AWS CodeBuild is fully managed continuous integration service that allow to compile source code,

run tests, and produce software packages that are ready to deploy. CodeBuild automatically patch

and build servers, can build docker images and other software builds. It supports few programming

languages and frameworks like Java, Bash, Go, Ruby, Python. It can concurrently run multiple builds;

you pay for time spent to process tasks.

For this project 1 CodeBuild project was setup:

16

- AWS Elastic Container Repository (ECR)

Amazon Elastic Container Repository is managed container image registry service that is secure,

scalable, and reliable. ECR is integrated with AWS Identity Access Management (IAM) for accessing

images.

For this project 1 repository was created and 24 hours retention policy was added to reduce cost:

- AWS CloudWatch

AWS CloudWatch is a monitoring and observability service build for DevOps, developers, site

reliability engineers and other who use AWS services. CloudWatch collects data in form of logs,

events, and metrics to provide complete visibility of AWS resources, applications and services

running on AWS. You can use CloudWatch set alarms, visualize metrics and logs, take automated

actions, or troubleshoot issues.

For this project, CloudWatch was used for EKS cluster, CodeBuild and for CodePipline to trigger

event when code is change on CodeCommit:

17

- AWS Identity Access Management (IAM)

With AWS Identity Access Management, you can specify who and what have access to services and

AWS resources.

For this project a few IAM roles were created:

CodePipeline

18

CodeBuild

Elastic Kubernetes Service

19

Elastic Kubernetes Service Nodes

- AWS RDS Database

AWS RDS service provides selection of purpose-build databases.

For this project SQL server database was setup:

20

- AWS Security Groups

AWS Security Groups control the network traffic that is allowed to reach and leave resources that

associates with it. For security reasons EKS nodes can allow inbound traffic just from EKS control

plane, load balancer and database security groups. Database allow inbound traffic just from EKS

nodes security group.

For this project 3 security groups were created:

Elastic Kubernetes Service Nodes

21

Load balancer

RDS SQL Server database

d. Application Design and Specification

Application is written in C# ASP.NET core on Razor pages with CSS. Application contains 11 pages:

Home, About, Contact, Records, Calculator, Solar Panels, Wind Turbines, Water Turbines, Solar

Water Panels, Electric Cars, Fence Turbines. All pages have a navigation bar that allow to change

pages and Home page has pictures that works as links to other pages. Each picture expands if

hovering over it and displaying information about link, additional links on pages highlight.

22

Application is connected to AWS RDS database and stores information used by Calculator and results

of calculation for future use. Records page display stored values in database but just after successful

login on this page and is not visible for everyone that visit the site. Site is cross-web browser is

working fine on Chrome, Internet Explorer, Firefox, Opera, Edge and probably others. It also works

on any mobile devices.

- Home page

- About page

23

- Contact page

- Calculator page

- Records

24

- Solar Panels

25

- Electric Cars

- Solar Water Panels

26

- Fence turbines

- Wind Turbines

27

- River Turbines

- Mobile page’s view

28

29

30

31

- _Layout.cshtml file to show CSS implementation for the website

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - CleanEnergy</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <link rel="stylesheet" href="~/css/site.css" asp-append-version="true" />
 <link rel="stylesheet" href="~/CleanEnergy.styles.css" asp-append-
version="true" />
<style>
.mynav_nav {

 overflow: hidden;
 background-color: #333;
 box-shadow: 20px 20px 10px #888888;
 margin: 0;
 padding: 0;
}

.mynav_nav a {
 float: left;
 font-size: 16px;
 color: white;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
}

.mynav_nav a:hover, .mynav_dropdown:hover .mynav_dropbtn {
 background-color: #4d4d4d;
}

.mynav_dropdown {
 float: left;
 overflow: hidden;
}

.mynav_dropdown .mynav_dropbtn {

 font-size: 16px;
 border: none;
 outline: none;
 color: white;
 padding: 14px 16px;
 background-color: inherit;
 font-family: inherit;
 margin: 0;
}

.mynav_dropdown-content {
 display: none;
 position: absolute;
 background-color: #f9f9f9;
 min-width: 160px;

32

 box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
 z-index: 1;
}

.mynav_dropdown-content a {
 float: none;
 color: black;
 padding: 12px 16px;
 text-decoration: none;
 display: block;
 text-align: left;
}

.mynav_dropdown-content a:hover {
 background-color: #ddd;
}

.mynav_dropdown:hover .mynav_dropdown-content {
 display: block;
}
.my_footer {
 list-style-type: none;
 background-color: #333;
 overflow: hidden;
 position: fixed;
 bottom: 0;
 color: white;
 text-align: center;
 height: 50px;
 width: 100%;

}
#pictures {
 display: block;
 width: 90%;
 height: 100%;
 object-fit: contain;
 margin-left: auto;
 margin-right: auto;
 padding-left: 110px;

}

#images {
 width: 30%;

 border: solid #333;

}

#images:hover {
 transform: scale(1.15);
}

h3 {
 text-align: center;
 font-size: 30px;
}

#links:hover {
 background-color: #33A8FF;
}

33

</style>

</head>
<body>
 <header>

 <div class="mynav_nav">

 Home
 About
 <a class="nav-link text-white" asp-area="" asp-
page="/Contact">Contact
 <a class="nav-link text-white" asp-area="" asp-
page="/Calculator">Calculator
 <div class="mynav_dropdown">

 <button class="mynav_dropbtn">Technologys</button>
 <div class="mynav_dropdown-content">
 <a class="nav-link text-dark" asp-area="" asp-
page="/Solarpanels">Solar Panels
 <a class="nav-link text-dark" asp-area="" asp-
page="/Windturbines">Wind Turbines
 <a class="nav-link text-dark" asp-area="" asp-
page="/Waterpanels">Water Panels
 <a class="nav-link text-dark" asp-area="" asp-
page="/Electriccar">Electric Cars
 <a class="nav-link text-dark" asp-area="" asp-
page="/Fenceturbines">Fence Turbines
 <a class="nav-link text-dark" asp-area="" asp-
page="/Riverturbines">River Turbines
 </div>
 </div>
 <a class="nav-link text-white" asp-area="" asp-
page="/Records">Records

 </div>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer>

 <div class="my_footer">
 <p>All rights reserved. © Clean Energy Portal
2022</p>
 </div>

 </footer>

 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @await RenderSectionAsync("Scripts", required: false)
</body>
</html>

34

6. Application Development environment

For developing frontend of this application, Visual Studio 2022 was used and for backend SQL

express with Microsoft SQL Server Management studio 18. To store code AWS CodeCommit was

used. Visual Studio is widely used IDE for developing console and graphical interface applications,

Windows Forms applications, websites, ASP.NET applications.

7. Infrastructure Development Environment

For this project Visual Studio Code was used, it is widely used code editor with support for

development operations like debugging, task running, and version control. Consist of many various

plugins and support many different programming languages.

35

8. Database Design
For this project AWS RDS SQL Server Database was used, it is relational database which contains

highly structured tables, where each row reflects a data entity, and every column defines specific

information field. Relational databases are build using the structured query language SQL to create,

store, update or retrieve data.

Database records and table Person was created for propose of this project:

Column Name Data Type Allow Nulls

PersonID Int No

FirstName Varchar(250) Yes

LastName Varchar(250) Yes

Energy numeric(30, 0) Yes

Size numeric(30, 0) yes

9. Application Testing

Purpose of testing is to give us confidence that such application is working correctly when

interacting with users, has good performance, and all input forms work as intended.

a. Performance testing

Testing with Lighthouse from Google, it is open-source tool for running technical website audits. This

tool was developed by Google, and it analyses: Performance, Progressive Web App, Accessibility,

Best Practices and SEO (search website optimization).

36

Testing with Page Speed Insight, this is an online synthetic benchmark tool which helps in identifying

performance best practices.

37

b. Manual testing

In manual testing each link on website was tested and is working as supposed to:

Website link Link Workin
g (yes
or no)

Navigation
bar home

asp-page="/Index" yes

Navigation
bar About

asp-page="/About" Yes

Navigation
bar Contact

asp-page="/Contact" Yes

Navigation
bar Records

asp-page="/Records" Yes

Navigation
bar
Calculator

asp-page="/Calculator" Yes

Navigation
bar Solar
Panels

asp-page=”/Solarpanels” Yes

Navigation
bar Solar
Water Panels

asp-page="/Waterpanels" Yes

Navigation
bar Water
Turbines

asp-page="/Waterpanels" Yes

Navigation
bar Wind
Turbines

asp-page="/Windturbines" Yes

38

Navigation
bar Electric
Car

asp-page="/Electriccar" Yes

Navigation
bar Fence
Turbines

asp-page="/Fenceturbines" Yes

Navigation
bar River
Turbines

asp-page="/Riverturbines" Yes

Picture Solar
Panels on
home site

asp-page=”/Solarpanels” Yes

Picture
Electric Cars
on home
page

asp-page="/Electriccar" Yes

Picture
Water
Turbines on
home page

asp-page="/Riverturbines" Yes

Picture Wind
Turbines on
home page

asp-page="/Windturbines" Yes

Picture
Fence
Turbines on
home page

asp-page="/Fenceturbines" Yes

Picture Solar
Water Panels
on home
page

asp-page="/Waterpanels" Yes

Spider web
info

https://spidersweb.pl/2022/08/plot-ktory-wytwarza-
prad.html

Yes

Blog of
Centrum
nauki

https://centrumnauki.eu/prad-z-plotu-chodnika-i-okiennej-
szyby/

Yes

BCD Energy http://www.bcdenergy.ie/renewables-hydro-power.php Yes
Suneco https://www.micro-hydro-power.com/ Yes
Eco
Evolution

http://www.ecoevolution.ie/small-scale-hydro.html Yes

Caldosolar https://caldorsolar.ie/ Yes
Wizer
Energy

https://wizerenergy.ie/ Yes

AEI https://www.aei.ie/ Yes
Solarstrea
m

https://www.solarstream.ie/ Yes

AEI https://www.aei.ie/ Yes
Pure
Energy
Technology

http://www.pet.ie/solar-heating.html Yes

Glenn
Dimplex
Ireland

https://www.glendimplexireland.com/brands/dimplex/domesti
c-heating-systems/solar-thermal-hot-water-systems

Yes

39

Carbon
free heat

https://carbonfreeheat.ie/wind-turbines-for-sale-ireland Yes

Wind and
Sun

https://www.windandsun.ie/product-category/wind-turbines/ Yes

Sun stream
energy

https://sunstreamenergy.ie/utility/wind/ Yes

Sustainabl
e Energy
Authority
Ireland

https://www.seai.ie/grants/home-energy-grants/ Yes

 Testing Calculator form on Calculator page:

Test Result Pass

When no entries provided and
click submit

First filed information that filed
can’t be empty

Yes

When no entries in last 2 fields Second Filed information that
field can’t be empty

Yes

When no entries in last filed Last filed information that can’t
be empty

Yes

When in last filed we try insert
not number

Unable to place number Yes

When in last field we try insert
fractions

Information on filed “Please
provide valid value. The two
nearest numbers are x and x”

Yes

When all fields are correct
entries

Information on web “Expected
energy generation: x KWh per
year.”

Yes

Testing form on Records page:

Test Result Pass

Run page Is not displaying records Yes

Entering incorrect username
or password

It is displaying on page “Wrong
username or password”

Yes

Entering correct username and
password

Displaying records from
database on page

Yes

10. Infrastructure testing

Testing if it is possible to access database from internet by using Microsoft SQL Server Management

Studio 18:

Error: “Cannot connect to databaseeksprojectv2.c0l2bn8ji4on.us-east-1.rds.amazonaws.com.

40

Additional information:

A network-related or instance-specific error occurred while establishing a connection to SQL Server.

The Server was not found or was not accessible. Verify that the instance name is correct, and that

SQL server is configured to allow remote connections. (Provider: Named Pipes Provider, error: 40 –

Could not open a connection to SQL Server) (Microsoft SQL Server, Error: 53)

Network path was not found”

Testing if website is accessible: yes

Testing Continuous Integration and Continuous Deployment to see if is working as supposed to:

Doing small change to code and uploading to AWS CodeCommit and is working fine.

Testing if one of nodes fail another one will be deployed automatically, terminating one node and

see if new is deployed to the EKS cluster, yes is working as intended, new node is deployed after 1-2

minutes.

41

11. Conclusions

Building system that is Highly Available, Secure, Redundant and Scalable, which consists automated

procedures for continuous integration and continuous deployment was a big, exciting challenge. It

was a fascinated adventure to bringing many different tools and building blocks to see like all these

pieces work together as one system. During this project I have built first webapp in pure HTML, CSS

and JavaScript realizing later that if application will be connected to database, every user can see

code as JavaScript run on web browser, not on server and then I decided re-write application in

ASP.NET core. Implementing Kubernetes orchestrator tool developed by Google (in AWS known as

EKS) wasn’t easy as it was new to me. Getting all features ready like Horizontal Pod Autoscaler which

require additional pods logging to work, give me little bit of troubles and few moments of

troubleshooting, finally finding that metrics-server need to be installed on Kubernetes cluster for

autoscaling to work. It is nice to see how new technologies can reduce the time needed to deploy

new updates or changes in your applications, by using containerization, continuous integration and

continuous deployment time is reduced from days to few minutes. Developers can make changes in

code many times a day and tested in minutes, if something is wrong with application previous

working docker image can be deployed in minutes.

12. References / Bibliography

Industrial IT and Automation, 2021: https://www.youtube.com/watch?v=iKmUMgZj-cE

BoostMyTool, 2022: https://www.youtube.com/watch?v=YUPg41kG_kw

W3schools, 2022: https://www.w3schools.com/asp/default.asp

Sandip Das, 2019: https://www.youtube.com/watch?v=LlisKI-gN5w

Sandip Das, 2021: https://www.youtube.com/watch?v=nEK7e0QUVio

AWS, 2022: https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html

AWS, 2022: https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

AWS, 2022: https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html

Saur Energy International, 2022: https://www.saurenergy.com/solar-energy-blog/here-is-how-you-

can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system

AWS, 2022: https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-

options/amazon-elastic-kubernetes-service.html

AWS, 2022: https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html

AWS, 2022: https://aws.amazon.com/codecommit/

AWS, 2022: https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-

parameter-store.html

https://www.youtube.com/watch?v=iKmUMgZj-cE
https://www.youtube.com/watch?v=YUPg41kG_kw
https://www.w3schools.com/asp/default.asp
https://www.youtube.com/watch?v=LlisKI-gN5w
https://www.youtube.com/watch?v=nEK7e0QUVio
https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-kubernetes-service.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-kubernetes-service.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://aws.amazon.com/codecommit/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

42

AWS, 2022: https://aws.amazon.com/codepipeline/

AWS, 2022: https://aws.amazon.com/codebuild/

AWS, 2022: https://aws.amazon.com/ecr/

AWS, 2022: https://aws.amazon.com/ecr/

AWS, 2022: https://aws.amazon.com/cloudwatch/

AWS, 2022: https://aws.amazon.com/iam/

Solargis, 2022: https://solargis.com/maps-and-gis-data/download/ireland

https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/iam/
https://solargis.com/maps-and-gis-data/download/ireland

